skip to main content


Search for: All records

Creators/Authors contains: "Anderson, M. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Storm-scale interactions with rough terrain are complex. Terrain has been theorized to impact the strength of low-level mesocyclones. Surface roughness and modifications of the surrounding environment also may impact tornadogenesis or tornado intensity. The Mountainburg, Arkansas EF2 tornado on 13 April 2018 traveled along a path with minor variations in intensity and elevation throughout most of the nearly 19-km (11.8 mi) damage path as the storm moved along a river valley. A detailed damage survey showed that the tornado then made an abrupt ascent of more than 200 m (656 ft) in the last 2 km (1.2 mi) before dissipating. By examining model soundings and conducting a detailed terrain analysis, this study examines what role terrain may have had in channeling the momentum surge and enhancing the low-level vorticity to influence tornadogenesis. Other storm-scale factors are investigated to determine their potential impact on the demise of the tornado. The differential reflectivity column is studied to determine if the updraft was weakening. The relative position of the tornado and mesocyclone also are examined as the tornado ascended the terrain and dissipated to determine whether the change in elevation impacted the overall strength of the storm and to evaluate whether the storm was undergoing a traditional occlusion cycle. Finally, a large-eddy simulation model is used to explore physical changes in a tornado encountering terrain similar to the Mountainburg, Arkansas, tornado near its demise. 
    more » « less